Меню

Лучи которые могут проникать через одежду



Лучи которые могут проникать через одежду

Физиологическое, или лечебное и закаливающее, действие лучистой энергии выявляется только при поглощении лучей предметом или тканью и при превращении их в тепловую или химическую энергию.
Всякое тело поглощает те самые лучи, которые оно способно излучать при той же температуре.

При падении света на человека или предметы часть световых лучей отражается, а другая часть проникает вглубь вещества или тела и поглощается в нем атомами и молекулами, переходя при этом в другие виды энергии — тепловую и химическую.

Ультрафиолетовые лучи поглощаются в самых поверхностных слоях кожи, и уже на глубине 0,6 мм их трудно обнаружить. Ультрафиолетовые лучи интенсивно поглощаются белками, жирами, красными кровяными шариками. Поглощение ультрафиолетовых лучей тканями воздействует на структуру клеток и является причиной возникновения так называемых фотохимических явлений.

Наиболее глубоко (на 5—6 см) проникают в тело человека красные и примыкающие к ним инфракрасные лучи. Некоторые исследователи утверждают, что при дальнейшем увеличении длины волн инфракрасные лучи поглощаются более поверхностно.

Преобладает мнение, что ультрафиолетовая энергия почти полностью поглощается в толще эпидермиса и лишь в незначительных количествах доходит до поверхности сосочков собственно кожи и поверхностных сосудистых сплетений.

Видимые лучи проникают значительно глубже. Это видно из таблицы, в которой величина проникновения лучей выражена в процентах.

Ранее было представлено, как ничтожно количество ультрафиолетовых лучей, которые проникают не только через всю толщу эпидермиса, но и достигают более глубоких слоев кожи (величина проникновения лучей выражена в процентах).

Малая проницаемость тканей человеческого организма даже для длинных лучей солнца объясняется тем, что наши ткани, в том числе и кожа, (представляют собой мутную среду, состоящую из неоднородных клеток с неодинаковым коэффициентом преломления. И чем дальше углубляться в наш организм, тем все более увеличивается эта мутность вследствие разнообразия клеток, подобных эпителию, соединительной ткани, жира, кровеносных сосудов и т. д.

В итоге вышеизложенного можно считать до известной степени вероятным, что 1) инфракрасные лучи обладают способностью проникать через ткани человеческого организма, даже при толщине их в несколько сантиметров; 2) видимые лучи проходят через слои ткани в несколько миллиметров; 3) ультрафиолетовые лучи проникают через слои ткани, измеряемые сотыми и десятыми долями миллиметра.

Незначительна также проникающая способность ультрафиолетовых лучей через ткани одежды: один слой марли задерживает более половины их (55—60%), вчетверо сложенная марля почти совершенно поглощает ультрафиолетовые лучи (94%). Оконное стекло толщиной 2 мм задерживает их полностью.

Источник

Отношение тканей одежды к ультрафиолетовым лучам

Материал нашел и подготовил к публикации Григорий Лучанский

Источник: Галанин Н.Ф. , Тюков Д.М. Отношение тканей одежды к ультрафиолетовым лучам. Из Ленинградского научно-исследовательского санитарно-гигиенического института. Гигиена и санитария № 2, 1954 г.

Деятельной поверхностью при радиационном обмене человека с окружающей средой является открытая поверхность его кожи, а также поверхность одежды. На долю первой приходится 11 – 12% всей поверхности, на долю второй – 88 – 89%.

Впервые об отношении ультрафиолетовых лучей к тканям одежды говорилось в работе первого профессора по гигиене в России А. И. Якоби «О полупрозрачных тканях», вышедшей в 1875 г., а спустя 13 лет С. Ф. Бубнов опубликовал исследования, освещающие вопрос о прозрачности тканей для химических лучей, как тогда назывались ультрафиолетовые лучи.

Несколько причин препятствовало развитию учения о радиационных свойствах тканей одежды. Во-первых, отсутствовала достаточно точная и в то же время практически доступная методика измерения тех небольших интенсивностей излучения, с которыми приходится иметь дело при учете ультрафиолетового излучения; во-вторых, сложилось ложное убеждение, что ткани для ультрафиолетовых лучей не прозрачны.

Несостоятельность этого взгляда на прозрачность тканей убедительно доказана работами Н. Ф. Галанина и Е. Н. Андреевой-Галаниной, Н. Н. Калитина, Ю. В. Вадковской, а в последнее время работами Н. Н. Мищук и Б. Л. Сущинского, В. В. Синицина и др.

Оказывается, что ткани одежды более прозрачны для ультрафиолетовых лучей, чем оконное стекло или стекло в арматуре осветительных приборов.

По исследованиям Т. А. Свидерской, 1 /16 эритемной дозы при многочасовом облучении дает лучший эффект, чем та же 1 /16 эритемной дозы за несколько минут. Природные ультрафиолетовые лучи, прошедшие через ткани одежды, очень часто превышают по интенсивности эти количества. Это обстоятельство обязывает относиться с большим вниманием к исследованию ультрафиолетовых лучей, проникающих через одежду и достигающих кожной поверхности.

Оптические свойства тканей одежды в отношении к ультрафиолетовым лучам были исследованы нами для участка спектра от границы видимой области до длины волны 297 mμ . С помощью монохроматора с кварцевой оптикой было произведено измерение отражения, проникновения и расчетным путем измерено поглощение однородных излучений. Источником излучения служила ртутно-кварцевая лампа ПРК-2. Лампу устанавливали на расстоянии 20 – 25 см от входной щели монохроматора.

Перед щелью ставили кварцевый конденсатор. Пучок однородных излучений, выходивший из монохроматора, падал на селеновый фотоэлемент. Возникший под действием излучения фототок регистрировался гальванометром чувствительностью 10 –9 .

Для измерения отражения и проникновения ультрафиолетового излучения были сконструированы два приспособления. Первое из них представляло собой полый цилиндр, внутри которого под углом в 60° устанавливали пластинку с отверстием, над которым закрепляли исследуемый образец ткани. Отраженный от ткани луч падал на селеновый фотоэлемент, установленный в боковой поверхности цилиндра.

Второе приспособление служило для определения прозрачности тканей и представляло собой кольцо шириной 30 мм, надетое на выходную часть монохроматора. В кольцо вставляли фотоэлемент. На расстоянии, не превышающем 3 мм от фотоэлемента, между двумя кольцевидными пластинками закреплялась исследуемая ткань.

Всего было исследовано 42 образца ткани, из них: приборное сукно – 7, мундирное – 2, шерстяная диагональ – 3, бумажная – 3, шерсть для платья – 4, ситец – 2, майя – 2, льняное полотно – 1, ткань (бумажная шерстянка) – 10, шелк – 4, бельевая ткань – 4.

При гигиенической оценке отношения тканей одежды к ультрафиолетовым лучам в пределах длины волн от 297 до 400 mμ , решающее значение имеет прозрачность тканей. Отражение и поглощение ими ультрафиолетового излучения представляют преимущественно теоретический интерес и имеют меньшее практическое значение. Изучаемая область спектра не обладает какими-либо свойствами, от воздействия которых человек должен защищаться при помощи одежды. Наоборот, желательно, чтобы ткани были максимально прозрачны для ультрафиолетового излучения и к этому именно и сводится гигиеническая их ценность. Поэтому основное внимание мы и сосредоточиваем на разборе вопросов прозрачности.

Прозрачность ткани одежды зависит от физических свойств материала, способов их изготовления и окраски. Плотные ткани или ткани, окрашенные в темные цвета, не пропускают ультрафиолетовых лучей, а если и пропускают, то лишь в незначительных количествах. К таким тканям из числа обследованных нами, относятся: приборное сукно (за исключением сукна белого цвета, которое в ничтожных количествах пропускает однородное излучение с длиной волны 365 mμ ), шерстяная и бумажная диагональ и некоторые другие ткани темного цвета. Ткани, пропускающие ультрафиолетовые лучи, приведены на рис. 1.

Читайте также:  Национальная одежда якутов презентация

Наиболее высокой прозрачностью (25,7 – 34,7%) обладают батист, рогожка, некоторые виды шелка, различные сорта бельевого материя-» 3 -Хорошей прозрачностью обладают ситец и майя (20,3%). Даже шерстяные ткани для платья дали прозрачность 4,4 – 10,4%. Окрашенные ткани менее прозрачны, причем чем глубже по топу окраска, тем меньше прозрачность ткани. Для одной и той же ткани при окраске в черный цвет прозрачность равна 0,6%, в синий – 1,9%, в голубой – 11,6%, в розовый – 16,4%, в желтый – 19,7%.

Суммарная прозрачность для ультрафиолетовых лучей слагается из прозрачности тканей к однородным излучениям. Наблюдается зависимость между длиной волны и величиной ее проникновения. С укорочением длины волны происходит падение проникновения лучистой энергии. Однако характер падения однородных излучений выражен неодинаково для различных тканей (рис. 2).

Спад кривой, как это показано на рис. 2, более резко выражен для бумажной шерстянки розового цвета и крепдешина; прозрачность их для коротких волн резко падает. Более плавный ход имеет кривая для креп-жоржета и бумажной шерстянки желтого цвета. Для первых двух тканей падение проникновения однородных излучений (405 – 302 mμ ) составляет 75,7 – 72%, для вторых – 52,4 – 42,8%. Из этого следует, что при гигиенической оценке тканей недостаточно знать проникновение всего потока ультрафиолетовых излучений, но необходимо также знать прозрачность тканей для однородных излучений.

Более сильное поглощение коротковолновых излучении, а иногда и полная их задержка приводят к резкому снижению биологического эффекта, а следовательно, и к снижению гигиенической ценности тканей для ультрафиолетовой области спектра.

Гигиеническая оценка тканей станет более понятной, если в основу ее будет положен биологический эффект. С этой целью на основании полученных данных о прозрачности тканей для однородных излучений Произведен расчет ожидаемого эритемного и бактерицидного действия, прошедшего через ткани ультрафиолетового излучения. В своих расчетах мы исходили из спектральной характеристики излучения ртутно-кварцевой лампы ПРК-2 для диапазона длины волн от 365 до 297 mμ и кривых относительно эритемного и бактерицидного действия лучистой энергии.

Результаты расчетов, выраженные в процентах, для эритемной и бактерицидной облученностей, создаваемых прошедшим через ткань лучистым потоком, приведены на рис. 3.

Эритемная облученность, создаваемая проникшим через ткани излучением ртутно-кварцевой лампы, как видно из рис. 3, достаточно большая. Эритемный поток, прошедший через ткани редкого тканья и тонкие ткани светлых тонов, создает на поверхности кожи человека облученность 5,15 – 7,4 мкэр/см 2 . В процентном отношении величина проникшей через них эритемной энергии составляет 11,5 – 16,5%. Даже такие ткани, как бумажная шерстянка, шерстяная шотландка, прозрачность которых для ультрафиолетовых лучей до сих пор вызывала сомнение, оказались прозрачными не только для спектральной области А, но и для более коротких волн. Эритемная облученность, создаваемая прошедшим через шерстянку излучением, составляет 2,52 – 5,15 мкэр/см 2 или 5,6 – 11,5% от количества упавшего на них излучения.

Если принять, что для образования эритемы необходимо 500 мкэр/см 2 , то для получения эритемы от излучения ртутно-кварцевой лампы, прошедшего через ткани, требуется продолжительность облучения, приведенная в табл. 1.

Для проверки этих данных были произведены специальные исследования. Допуская, что эритемная облученность человека изменяется обратно пропорционально квадрату расстояния, на расстоянии 60 см от лампы время облучения по расчету должно быть при облучении через батист 24 минуты, через бельевую ткань артикул 69 – 24 минуты, через креп белый – 28 минут, через рогожку – 29 минут, через бельевую ткань артикул 77 – 29 минут.

Произведенные наблюдения не подтвердили расчетных данных, что видно из табл. 2.

В среднем для получения эритемы потребовалось в 2 раза меньше времени, чем по расчету.

Для установления достоверности полученных результатов эти наблюдения были сопоставлены с наблюдениями за образованием эритемы при облучении кожи через стеклянный фильтр, отрезающий область спектра короче 297 mμ . В отличие от тканей спектральная характеристика прозрачности фильтра может быть получена с высокой степенью точности. Эритемная облученность, создаваемая прошедшим через фильтр излучением с волнами той же длины, что и при испытании тканей, составляла 6,8 мкэр/см 2 . Оказалось, что образование эритемы при облучении кожи через фильтр также происходит быстрее (в 1,7 раза), чем это должно быть по расчету.

Исходя из времени образования эритемы и спектральной характеристики прозрачности тканей и фильтра, получаем, что для образования эритемы требуются следующие облученности: при прохождении излучения через фильтр – 266 мкэр/см 2 , батист – 207 мкэр/см 2 , бельевую ткань артикул 69 – 204 мкэр/см 2 , креп белый – 275 мкэр/см 2 , бельевую ткань артикул 77 – 260 мкэр/см 2 , рогожку – 260 мкэр/см 2 , шелковое полотно – 244 мкэр/см 2 , т. е. в среднем 244 мкэр/см 2 .

Таким образом, непосредственные наблюдения показали, что для образования эритемы от излучения ртутно-кварцевой лампы, прошедшего через ткани в пределах длины волн от 297 до 365 mμ , требуется не 500 мкэр/см 2 , а вдвое меньше.

Возможно, этот факт объясняется особенностями действия длинноволнового излучения, более глубоко проникающего в кожу человека.

В зарубежной литературе имеются ссылки, указывающие, что отфильтрование коротковолнового излучения не сказывается на образовании эритемы. Поскольку принятая облученность в 500 мкэр/см 2 учитывает весь эритемный поток ртутно-кварцевой лампы, состоящий из длинноволнового и коротковолнового излучениий (причем на долю последнего падает более половины эритемного потока), то следует допустить, что эта часть потока в наших наблюдениях не принимала участия в образований эритемы.

Если придерживаться других источников, то количество облучения, необходимое для образования эритемы за счет длинноволновой области, может быть иным. Оно зависит от спектрального состава излучения. При наличии большого количества инфракрасного излучения, снижающего эритемную эффективность ультрафиолетовых лучей, величина эритемного потока должна быть увеличена.

Значительно больший интерес вызывает прозрачность тканей одежды для ультрафиолетового излучения солнца. К сожалению, таких измерений произвести не удалось. Чтобы иметь представление об отношении тканей к ультрафиолетовым лучам солнца, мы приводим расчетные данные, составленные по прозрачности тканей для однородных излучений от ртутно-кварцевой лампы и по данным о распределении энергии в ультрафиолетовой области солнечного излучения в Ленинграде при высоте стояния солнца 52°.

Результаты расчетов отношения некоторых наиболее прозрачных тканей к ультрафиолетовым лучам солнца произведены в табл. 3.

Эритемная облученность, создаваемая прошедшим через эти ткани ультрафиолетовым излучением солнца, составленная по расчету, приведена в табл. 4.

Расчетное время, необходимое для получения эритемы, будет: при облучении через батист – 157 минут, креп –173 минуты, бельевую ткань, артикул 77 – 177 минут, майю – 272 минуты, шелковое полотно 284 минуты.

Читайте также:  Шкафчик домик для одежды

Эти данные подтверждаются практическими наблюдениями.

Так, например, у двух наблюдаемых, одетых в блузки, сшитые из батиста и из ситца, после четырех часов пребывания на солнце через 24 часа была отмечена начальная эритема. Общая облученность при этом на поверхности кожи (под батистом) за весь период облучения была равна 530 мкэр/см 2 при эритемной эффективности солнечного излучения за этот же период, равной 1 420 мкэр/см 2 .

Источник

Все, что вы хотели знать об ультрафиолете

Все мы любим солнце, бежим ему на встречу при первых его лучах, любим понежиться на солнце и получить красивый загар, но ВАЖНО помнить, что вы можете повредить незащищенную кожу всего за 15 минут, загорелое тело на самом деле это не что иное, как признак того, что ваша кожа повреждена и пытается защитить себя.

Да-да! Здорового загара не бывает! Кожа вырабатывает пигмент темного цвета (меланин) в качестве защиты от дальнейшего повреждения от ультрафиолетового излучения. Темный цвет кожи обеспечивает некоторую защиту от солнечных ожогов + загорелая кожа дает примерный солнцезащитный фактор от 2 до 4, а по некоторым данным 13. Однако он не защищает от долговременного воздействия ультрафиолета, и всех побочных эффектов от его переизбытка.

Поэтому, как всегда , мы должны помнить о дозе!

ПОЛЬЗА

УФ-излучение в небольших дозах полезно:

  • необходимо для выработки витамина D;
  • помогает в лечении некоторых заболеваний (в комплексе и обязательно под строгим наблюдением врача, беря в расчет негативное воздействие УФ), таких как экзема, псориаз, витилиго, рахит или желтуха;
  • УФ-лучи также можно использовать для дезинфекции или стерилизации.

ВРЕД

Слишком большое пребывание на солнце может быть вредны, особенно для нашей иммунной системы, глаз и кожи.

Кожа

Чрезмерное UV-излучение повреждает кожу и её иммунную систему, утолщает ее, нарушает кровоснабжение, и вызывает фотостарение. Старение кожи на 70% зависит от ультрафиолетового излучения.

Солнечный ожог (эритема)

Высокие дозы ультрафиолетового излучения разрушают большинство клеток в верхнем слое кожи, а клетки, которые не были разрушены, повреждаются. Самая легкая форма ожога – покраснении кожи (эритема). Данное состояние появляется вскоре после воздействия ультрафиолетового излучения и достигает максимальной интенсивности через 8-24 часов. Затем исчезает в течение нескольких дней.

Признаки поврежения

Защитная реакция кожи – производство меланина (наш желаемый загар) и утолщение поверхностного слоя эпидермиса, который ослабляет проникновение ультрафиолета в более глубокие слои кожи. Оба изменения являются признаком повреждения кожи.

Фотостарение

Ультрафиолетовое излучение ускоряет старение кожи, а постепенная потеря ее эластичности приводит к появлению морщин и сухой, грубой коже. Происходит это несколькими способами:

  • Уменьшается количество стволовых клеток, что приводит к истончению кожи и образованию морщин на коже.
  • УФ-излучение активирует ферменты, называемые матриксными металлопротеиназами (ММP), которые разрушают коллаген.
  • Ультрафиолетовое излучение также активирует фермент катепсин К, который расщепляет эластин.

Морщины

Солнечное воздействие способствует старению вашей кожи благодаря сочетанию нескольких факторов:

  • UVB стимулирует пролиферацию клеток (рост клеток) эпидермиса, что что способствует его утолщению.
  • UVA, проникая в более глубокие слои кожи, нарушает соединительную ткань: кожа постепенно теряет свою эластичность. Морщины, потеря упругости являются частым результатом этой потери эластичности.

Светочувствительность

Небольшой процент населения имеет состояние кожи, которое делает его особенно чувствительным к ультрафиолетовым лучам солнца. Минимальная доза УФ-излучения достаточна, чтобы вызвать аллергическую реакцию, приводящую к сыпи или сильному солнечному ожогу. Светочувствительность часто связана с использованием определенных лекарств, включая некоторые нестероидные противовоспалительные препараты и обезболивающие, транквилизаторы, пероральные антидиабетические препараты, антибиотики и антидепрессанты. Если вы принимаете какие-либо лекарства на регулярной основе, пожалуйста, изучите его аннотацию (обратите внимание на пункт о фоточувстительности) или проконсультируйтесь с вашим врачом о возможных реакциях. Некоторые продукты питания и косметические продукты, такие как отдушки и мыло, могут также содержать ингредиенты, которые вызывают или ухудшают данное состояние.

Рак кожи

Большинство немеланомных раковых заболеваний кожи и большой процент меланом связаны с воздействием ультрафиолетового излучения солнца. Неважно, сколько вам лет или какого цвета ваша кожа. Ваш риск увеличивается в зависимости от длины и глубины воздействия ультрафиолетового излучения. Вы подвергаетесь большему риску, если у вас светлая кожа и большое количество невусов, так же имеет значение наследсвенный фактор.

  • Базальноклеточный рак (базальноклеточная карцинома, базалиома, базальноклеточная эпителиома) – наиболее распространенный тип рака кожи. Состоит из клеток, подобных клеткам базального слоя эпидермиса. Растет медленно, редко распространяется на другие части тела (метастазирует) и может быть удален хирургическим путем. Однако может наблюдаться обширный местный рост, который приводит к существенным косметическим и функционaльным нарушениям.
  • Плоскоклеточный рак является второй наиболее распространенной формой рака кожи. Проявляется в виде утолщенного красного чешуйчатого пятна на участках тела, которые чаще всего подвергаются воздействию УФ-излучения. Поскольку они иногда метастазируют, они более опасны, чем базальноклеточный рак. Тем не менее, они также имеют тенденцию к медленному росту и обычно могут быть удалены хирургическим путем, прежде чем они станут серьезным риском.
  • Злокачественная меланома – самый редкий, но самый опасный тип рака кожи. Может возникать как новая родинка или как изменение цвета, формы, размера или ощущения уже имеющегося невуса. Меланомы имеют тенденцию иметь неправильную форму и пятнистую окраску.

Если у вас много невусов (родинок) или появилось новое пятно/веснушка/невус, которое вам кажемся подозрительным – обратитесь к дерматологу. Регулярно проверяйте, нет ли родинки, которая растет, меняет форму или цвет, воспалена или зудит, кровоточит.

Ультрафиолетовое излучение является доказанной причиной базальноклеточной карциномы (BCC) 1 и плоскоклеточной карциномы (SCC) 2 , которые часто появляются на участках кожи, подверженных воздействию солнца. К счастью, когда обнаруживается достаточно рано, эти распространенные формы рака кожи почти всегда излечимы.

ВАЖНО

Ущерб от воздействия ультрафиолета накапливается и суммирутеся на протяжении всей жизни, вызывает поврежение ДНК и мутации, и со временем увеличивает риск возникновения рака кожи.

Что же такое ультрафиолет?

УФ-излучение является частью естественной энергии, производимой солнцем. В электромагнитном спектре ультрафиолетовый свет имеет меньшую длину волны, чем видимый свет, поэтому ваши глаза не могут видеть ультрафиолетовое излучение, но ваша кожа может чувствовать его. Он может поступать из природных источников, таких как солнечный свет, а также из искусственных источников, таких как лазеры, черные лампы и солярии.

Солнечный свет делится на 3 спектра: ультрафиолет, видимый свет и инфракрасное излучение – все три могут оказывать как негативные, так и позитивные действия на кожу.

Разберем ультрафиолетовое излучение, которое делится на UVC, UVВ и UVA. Все виды УФ-излучения могут повредить вашу кожу, но каждый тип влияет на вашу кожу по-своему.

Читайте также:  Отпариватель для одежды штор мебели

Ультрафиолетовое излучение A (UVA лучи)

  • Разделяют UVA1 длинные лучи и UVA2 короткие лучи. UVA лучи вызывают загар, а короткие волны UVA также вызывают солнечные ожоги. Имеют более высокие длины волн, но более низкие уровни энергии, чем другие УФ-лучи.
  • Лучи UVA , хотя и немного менее интенсивны, чем UVB, проникают в кожу более глубоко. Вызывают косвенное повреждение ДНК.
  • UVA лучи активно стимулируют меланогенез, ответственны за фотостарение, повреждения коллагена и эластина, что приводит к увеличению морщин, гиперпигментации и преждевременному старению кожи. Также связаны с некоторыми видами рака кожи.
  • UVA лучи являются основным типом света, используемого в большинстве соляриев. Можно ли назвать загар в солярии безопасным — ответ как раз в этих абзацах.
  • UVA составляет до 95% ультрафиолетового излучения, достигающего Земли. Эти лучи поддерживают один и тот же уровень силы в дневное время в течение всего года. Это означает, что в течение всей жизни мы все подвергаемся воздействию ультрафиолетовых лучей, могут проникать сквозь облака, воду, стекла и легкую одежду.
  • UVA лучи могут проникать в окна и облачность.

Маркировки на этикетки для UVA лучей: PA+/++/+++/++++, broad spectrum, UVA в кружке.

Ультрафиолетовое излучение B (UVB лучи)

  • Относительно лучей UVA, лучи UVB имеют меньшую длину волны и более высокие уровни энергии.
  • UVB лучи повреждают самые внешние слои кожи. Оказывают негативное действие на поверхностный слой эпидермиса, не достигая дермы.
  • Стимулируют выработку меланина, а в больших дозах – эритему, ожог.
  • Напрямую повреждают ДНК.
  • Могут повреждать сетчатку глаза, вызвать рак кожи, а также участвуют в фотостарение.
  • Интенсивность UVB колеблется. Представляют наибольший риск с позднего утра до полудня с весны до осени в умеренном климате и даже с большим временным интервалом в тропическом климате, ультрафиолетовые лучи могут повредить вашу кожу круглый год, особенно на больших высотах или на отражающей поверхности поверхности, такие как снег или лед.
  • UVB частично поглощаются озоновым слоем. Около 5% ультрафиолетовых лучей достигают Земли.
  • UVB лучи не проникают в окна и, скорее всего, будут отфильтрованы облаками.

Маркировка на баночке «SPF» показывает насколько эффективно средство от ожогов и эритемы, но она не является показателем защиты от UVA-излучения. Также в приложениях (например, «Погода» в iPhone), показывающие UV индекс – он также показывает активность только UVB-излучения.

Ультрафиолетовое излучение C (UVС лучи)

  • Имеет самую короткую длину волны и самые высокие уровни энергии из трех типов ультрафиолетовых лучей. В результате они могут нанести серьезный ущерб всем формам жизни.
  • UVC лучи полностью отфильтровывается озоновым слоем, эти солнечные лучи никогда не достигают земли.
  • Люди, работающие со сварочными горелками или ртутными лампами, могут подвергаться воздействию лучей UVC.

ВАЖНО

  • Восприимчивость к повреждению кожи зависит от типа кожи: люди с более светлой кожей будут более склонны к солнечному ожогу или эритеме, чем люди с более темной кожей. Подобным образом, способность адаптироваться к воздействию ультрафиолета (способного загореть) также зависит от типа кожи.
  • Лучи по-разному отражаются от разных поверхностей: снег, вода, лед, в меньшей степени трава, асфальт. И это усиливает их интенсивность. Поэтому защита необходима как на отдыхе, так и в городе.
  • Интенсивность воздействия лучей увеличивается на высоте, поэтому первое, о чем следует позаботиться при поездке в горы, это солнцезащитный крем.
  • 95% UVА лучей проникает через облака, поэтому защита в облачную погоду также обязательна.
  • Также стоит помнить о том, что любое повреждение кожи ультрафиолетом, даже невидимое глазу, суммируется на протяжении всей жизни! Наш организм запоминает каждый ультрафиолетовый луч и каждый ожог.

Как себя защитить?

Вы можете легко снизить вероятность развития рака кожи, позаботившись о защите от ультрафиолетового излучения. Нравится нам это или нет, но по мере взросления все будут проявлять признаки старения. Старение, которое мы не можем контролировать, называется внутренним или хронологическим старением, здесь, кстати, нам активно поможет антиэйдж медицина. Хотя мы не можем контролировать этот тип старения, мы можем контролировать наше воздействие факторов окружающей среды, которые усугубляют признаки старения, такие как хроническое воздействие высоких и низких температур, курение и употребление алкоголя. Одним из основных факторов окружающей среды, из-за которого стареет наша кожа, является ультрафиолетовое излучение солнца. Чтобы сохранить вашу кожу здоровой, важно защитить себя от солнечных лучей, особенно если вы знаете, что будете находиться на улице в течение длительного времени.

  1. Применять солнцезащитный крем: выбирайте солнцезащитный крем, который предлагает защиту широкого спектра, блокирующий UVA и UVB лучи.
  2. Не экономьте. Многие не «донаносят» необходимое количество средства и не получают должной защиты от солнца (на лицо – четверть чайной ложки; на лицо и шею – половина чайной ложки, на все тело – 30-40 мл).
  3. Выберите правильный солнцезащитный крем, помните о маркировке. Моя рекомендация для ежедневной защиты от солнца – минимум SPF 30, с уровнем PA+++.
    — Более высокие значения SPF означают большую защиту от UVB лучей (коротковолновых лучей, которые повреждают поверхностные слои кожи). SPF 30 блокирует 97% UVB-лучей, а SPF 50 блокирует 98%.
    — Но маркировка SPF не означает, что крем защищает от лучей UVA (длинноволновые лучи, которые проникают глубоко в дерму). UVA-лучи связаны с преждевременным старением и некоторыми видами рака кожи. Для защиты от UVA обратите внимание на дополнительные знаки + после РА, broad spectrum, UVA в кружке.
  4. Обновляйте. Солнцезащитный крем необходимо наносить не реже одного раза в 2 часа или чаще, если вы потеете, занимаетесь спортом или плаваете. Даже водостойкие средства защиты нуждаются в обновлении, так как солнцезащитные фильтры изнашиваются.
  5. Одежда может защитить от воздействия ультрафиолета. Плотно сплетенные сухие ткани являются лучшими. Многие компании производят одежду для открытого воздуха, которая обеспечивает повышенную защиту от ультрафиолетовых лучей.
  6. Оставайся в тени. Ограничьте воздействие прямых солнечных лучей, оставаясь в тени. Это наиболее важно с 10 до 16 часов, когда ультрафиолетовые лучи сильнее, ближе к экватору данный диапазон шире.
  7. Носить шляпу. Шляпа с широкими полями может обеспечить дополнительную защиту ваших ушей и шеи.
  8. Носить солнцезащитные очки. Выбирайте солнцезащитные очки, которые обеспечивают защиту от ультрафиолетового излучения, чтобы предотвратить повреждение глаз и окружающей кожи, а также не забывайте использовать защиту от солнца на эту область.
  9. Носите солнцезащитный крем, когда находитесь в помещении. UVA — лучи могут проникать через окна в домах, офисах и автомобилях. В качестве альтернативы, держите жалюзи и шторы опущенными.

Если у Вас остались или появились вопросы, не стесняйтесь и задавайте их под последним постом в Instagram,
а также подписывайтесь на Telegram-канал.

Источник